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Abstract

An idealized representation of the dispersed flow in a fully-developed annular pattern is considered for
the case of zero gravitational effects. The walls of a two-dimensional channel are represented as presenting
arrays of infinitesimal particle sources. The behavior of a single source is described by modeling the fluid
turbulence seen by the particles with a modified Langevin equation. By carrying out the calculations over a
wide range of dimensionless time constants the deposition process could be followed, as the controlling
mechanism changed from Brownian diffusion, to turbulent diffusion, to free-flight, to unidirectional non-
turbulent trajectories. The calculation of local mean particle accelerations allowed a direct evaluation of
the turbophoretic velocity. A consideration of the concentration profiles indicates that a Boussinesq repre-
sentation of turbulent mixing is not valid in an Eulerian analysis.
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1. Introduction

Understanding of dispersion and deposition of particles in a turbulent field has been advanced
through studies of the behavior of point sources in direct numerical simulations (DNS). The dif-
ficulty with this approach is that computer requirements limit studies to small Reynolds numbers,
small durations and to a range of variables that is insufficient to capture, completely, the physics.
Therefore, we have explored the use of a stochastic method which uses a modified Langevin equa-
tion (Mito and Hanratty, 2002; Iliopoulos et al., 2003) to represent the fluid turbulence. This ap-
proach has been tested at Res = Hv

*/m = 150, where H is the half height of the channel, v*, the
friction velocity and m, the kinematic viscosity, by considering sources of tracers located in the
fluid (Iliopoulos et al., 2003) and at the wall (Mito and Hanratty, 2003).
The success of these comparisons prompted a comprehensive study of an idealized version of an

annular flow in a horizontal rectangular channel. The concentration field of drops in an annular
flow is pictured as resulting from a distribution of sources on the films flowing along the walls.
Drops, which are represented by spherical solid particles, are injected from both walls and even-
tually deposit on the walls. At sufficiently large computation times, a fully-developed condition is
realized, for which the rates of injection and deposition are equal and the concentration field is not
changing (Binder and Hanratty, 1992). It is noted that this system differs from previous calcula-
tions of deposition which used a uniform distribution of particles as the initial condition and al-
lowed the number of particles in the field to change with time. Calculations were done over a
range of dimensionless inertial time constants of sþp ¼ spv�2=m ¼ 3–40, and dimensionless terminal
velocities of V þ

T ¼ 0–3:2.
Results for the effect of gravity on the rate of deposition are given in a previous paper by Mito

and Hanratty (2004). This paper presents calculations of the concentration profiles and a more
detailed examination of the deposition process for VT = 0 (zero gravity). This is essentially the
same as a vertical flow if lift forces are neglected. Early work by Friedlander and Johnstone
(1957) and others used the assumption that the concentration would be close to zero at a perfectly
absorbing wall. Particles were pictured to move toward the wall by turbulent dispersion and to
deposit by free-flight from a fixed location in the fluid. Lee et al. (1989) have argued that, for
free-flights, the particle concentration at the wall would be finite. Computer experiments by
Brooke et al. (1992, 1994) in a DNS of channel flow examined more carefully deposition under
conditions where Brownian motion is not important (the so-called ‘‘inertial impaction’’ regime).
These studies, as well as those by Kallio and Reeks (1989) and Sun and Lin (1986), showed that a
maximum in the concentration profile occurs at or very close to the wall. Thus, turbulent diffusion
would bring particles away from the wall. Brooke et al. observed that particles with very large
velocities disengage from the turbulence at different locations close to the wall. They continued
to describe these events as free-flights, even though their observations were quite different from
what was suggested by Friedlander and Johnstone. The particles could move directly to the wall
and deposit with velocities characteristic of turbulence in the buffer layer or they could get trapped
in a low turbulence layer in the immediate vicinity of the wall, from which they deposit with veloc-
ities characteristic of the fluid turbulence in that region. Brooke et al. (1994), therefore, defined
two mechanisms for deposition, depending on whether the rate is controlled by ‘‘free-flight’’ or
‘‘turbulent diffusion.’’ This behavior has been verified in several recent studies (Chen and
McLaughlin, 1995; van Haarlem et al., 1998; Narayanan et al., 2003). Mito and Hanratty
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(2004) provide additional discussion of the model for free-flight provided by Brooke et al., but an
established mathematical description is still not available.
The accumulation of particles near the wall has been interpreted in an Eulerian framework by

arguing that particles are brought to the wall by a turbophoresis mechanism (Kallio and Reeks,
1989; Brooke et al., 1992, 1994). The classical approach outlined by Caporaloni et al. (1975) and
by Reeks (1983) is that a drift velocity is created by a gradient in the particle velocity fluctuations
V tp ¼ ��sp
ov22
ox2

; ð1Þ
where V 2 ¼ V 2 þ v2 is the velocity in the x2 direction. Young and Hanratty (1991) made labora-
tory measurements of the mean particle acceleration and showed that Eq. (1) can be obtained by
considering the ensemble mean acceleration of the particles at a given location,
V tp ¼ ��sp
dV 2
dt

; ð2Þ
if an incompressibility assumption is made, whereby the influence of changes in the particle con-
centration is ignored. Young and Leeming (1997) presented a thorough investigation of this idea
and derived a representation of dV 2=dt which includes compressibility effects. Cerbelli et al. (2001)
used an approximate form of the equation developed by Young and Leeming and found that the
spatial variation of the mean concentration needs to be taken into account when representing the
mean particle acceleration.
The approach that has been taken to calculate the fully-developed concentration field, in an

Eulerian framework, is to use a Boussinesq approximation to represent the turbulent mixing
(Reeks, 1983, 2003; Johansen, 1991; Young and Leeming, 1997; Cerbelli et al., 2001):
C�spg2 þ CV tp � e
oC
ox2

¼ F 2ðx2Þ: ð3Þ
where g2 is the component of the acceleration of gravity in the x2-direction, e is a turbulent dif-
fusivity and F2(x2) is the net particle flux in the x2-direction. The first term, representing gravita-
tional settling, will be zero for the cases to be considered. Closure models are needed to specify
e(x2), dV 2=dtðx2Þ and v22ðx2Þ.
The work described in this paper differs from previous analyses in that a system with wall

sources is considered. This offers the simplification that, for a fully-developed condition, the flux,
F2(x2), is zero since the rates of injection and deposition are equal at each wall. The use of a stoch-
astic method to represent the fluid turbulence allows calculations of sufficient duration that a fully
developed condition is assured. The calculations differ from the stochastic analyses of Hutchinson
et al. (1971), Reeks and Skyrme (1976), Kallio and Reeks (1989) in that a modified Langevin
equation is used to represent the turbulence seen by the particles.
Two results to be presented in this paper are the calculations of the spatial variation of the

mean acceleration and of the mean concentration. These allowed an evaluation of Eq. (1) and
of the equation for dV 2=dt presented by Cerbelli et al. (2001). The mean concentration profiles
are compared with calculations made with Eq. (3). The turbophoretic velocity is obtained from
calculated dV 2=dt and Eq. (2) so that the use of a Boussinesq approximation could be directly
tested.
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A number of studies motivate a consideration of the accuracy of present methods for represent-
ing turbulent mixing: Hinze (1975) discusses results in free shear flows which suggest that disper-
sion, associated with large scale structures, can occur in the absence of a scalar gradient. Brooke et
al. (1994) noted that free flights could stop before they reach the wall and that this type behavior
could be a contributor to turbulent transport. Taylor (1921) showed that turbulent dispersion of
fluid particles from a point source is time-dependent. By representing a hot wall as an array of
thermal sources, Hanratty (1956) used Taylor�s analysis to show that the spatial variation of tur-
bulent diffusivities defined by a Boussinesq equation can reflect the time dependency of turbulent
diffusion in addition to the spatial variation of the turbulence. (For example, the concentration
field close to the wall is more strongly affected by sources which have been in the field for short
time periods.) A detailed discussion of possible deficiencies of a Boussinesq approximation has
been given by Reeks (2003), who used a PDF approach to describe dispersion of solid particles.
An important aspect of this study is the determination of deposition constants at large enough

computer times that a fully developed condition is assured and over a much larger range of dimen-
sionless time constants (1 to 105) than had previously been explored in a single calculation. Of
particular importance to the description of deposition in annular flows are the delineation of
the turbulent and the trajectory mechanisms and the verification of a relation recently proposed
for the turbulent regime.
2. Computational approach

The system depicted in Fig. 1 is the idealized representation of an annular flow discussed in the
introduction. The rectangular channel has a height of 2H and is infinitely wide. The flow is fully-
developed and Res = 590. The solid spheres, that represent the drops, have a diameter of dp. They
are injected with a velocity of V 01, V

0
2 from the bottom wall at a rate per unit area of RAb and, from

the top wall with a velocity V 01, �V 02 at a rate per unit area of RAt. They are removed from the field
when they hit a wall. (At injection and deposition, the center of a particle is a distance of dp/2
from a wall.) For a fully-developed condition
RAb ¼ RDb and RAt ¼ RDt; ð4Þ

where RDb and RDt are the deposition rates at the bottom and top walls (Binder and Hanratty,
1992). For the condition considered in this paper, VT = 0 and the particle distribution is symmet-
ric, so RAb = RAt and RDb = RDt.
Fig. 1. Gas–liquid annular flow in a horizontal channel.
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The method of analysis is described in Mito and Hanratty (2003). The two walls are considered
to be the loci of instantaneous sources of particles. The contributions of these sources are summed
so as to produce a fully-developed field. The theoretical problem, then, is to calculate the behavior
of a single wall source. Dilute flows of particles which are much heavier than the gas are consid-
ered. Thus, lift forces (Saffman, 1965, 1968; Mei, 1992; McLaughlin, 1991; Wang et al., 1997),
interparticle collisions and the influence of particles on the gas flow are ignored. These simplifying
assumptions have been made in a number of previous studies (Brooke et al., 1994; van Haarlem
et al., 1998; Narayanan et al., 2003). The location and velocity of a particle admitted at a time t 0,
between 0 and t (where t is the duration of the calculation), are defined by the following equations:
dxi
dt

¼ V i ð5Þ
dV i

dt
¼ � 3qfCD

4dpqp
jV �U jðV i � UiÞ þ gi ð6Þ
where xi is the location of the particle, Vi is the velocity of the particle, Ui is the gas velocity seen
by the particle, qp is the density of the particle, qf is the density of the gas, and gi, is a component
of the acceleration of gravity. In the system shown in Fig. 1, x1, x2, x3 are assigned to the coor-
dinates in the streamwise, wall-normal and spanwise directions. The results presented in this paper
are for the case of gi = 0. The drag coefficient, CD, is given by
CD ¼ 24

Rep
ð1þ 0:15Re0:687p Þ ð7Þ
where the particle Reynolds number, Rep, is defined with dp and the magnitude of the relative
velocity jU � Vj. The dimensionless inertial time constant of a particle is defined as
sþp ¼
4dþ

p ðqp=qfÞ
3CDjVþ �Uþj : ð8Þ
For a Stokes law resistance
sþpS ¼
dþ2
p ðqp=qfÞ
18

: ð9Þ
In the non-Stokes region the average of sþp is a function of x2. Thus, the volume-averaged inertial
time constant sþpB is a more appropriate parameter to describe particle turbulence:
sþpB ¼ 1

2HCB

Z 2H

0

�sþp ðx2ÞCðx2Þdx2; ð10Þ
where CB is a bulk concentration defined as
CB ¼ 1

2H

Z 2H

0

Cðx2Þdx2: ð11Þ
For some of the conditions considered in this paper, sþpB could be six times larger than sþpS.
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All of the particles admitted at a time t 0 eventually deposit, so that for large enough t a fully
developed condition is reached for which contributions were made from sources which entered
the field at a number of previous times. The time required for all of the particles from a source
to deposit increases dramatically with decreasing sþp . Integral time periods of t

+( = tv*2/
m) = 5 · 104 to 2 · 108 were needed to reach stationary states for sþpS values ranging from 1 to
40. Clearly this calculation would not be feasible for a DNS at Res = 590. Calculations in which
contributions by Brownian motion were included had durations of t+ = 1 · 108 for sþpS ¼ 1 and
t+ = 3 · 106 for sþpS ¼ 5.
The fluid velocity in Eq. (6) is represented as the sum of a mean component, obtained from

Eulerian measurements, and a fluctuating component, ui. The use of a Langevin equation to rep-
resent the fluid velocity seen by particles has been explored by Perkins (1992), Sommerfeld et al.
(1993), Pozorski and Minier (1998), Iliopoulos et al. (2003) and Mito and Hanratty (2003). This
approach is pursued in the present paper.
In its simplest form, the Langevin equation consists of a damping force and a Wiener process

which calculates velocities of passive tracers by assuming they are approximated by a Markov
sequence. Lin and Reid (1963) and Obukhov (1959) applied the Langevin equation to homoge-
neous isotropic turbulence. The change in the velocity of a tracer over a time interval dt was
given by
dui ¼ � ui
si
dt þ dli; ð12Þ
where si is a time constant. The forcing function dli has a zero mean and is given by a Gaussian
function. This equation provides the same result as obtained by Taylor (1921) in his analysis of
dispersion from a point source if the Lagrangian correlation is represented by exp (�t/sL) and
si = sL, the Lagrangian time scale.
The Langevin equation has been adapted to describe dispersion of fluid particles in nonhomo-

geneous fields by Durbin (1983, 1984), Hall (1975), Iliopoulos and Hanratty (1999), Legg and
Raupach (1982), Reid (1979), Reynolds (1997), Thomson (1984, 1986, 1987), van Dop et al.
(1985) and Wilson et al. (1981).
We have used the approach of Wilson et al. (1981) and of Thomson (1984), whereby
d
ui
ri

� �
¼ � ui

risi
dt þ dli þ dl0

i; ð13Þ
where the forcing function, the time scale, si, and the root-mean square of the velocity fluctua-
tions, ri, are functions of x2. The forcing function, dli, consists of a mean component, dli, and
a fluctuating component, dl0

i. The fluctuating component is assumed to be Gaussian. A number
of investigators have shown that dli must be nonzero in order to avoid spatial accumulations
which are not physical. The mean drift, dli, and the covariance, dl

0
idl

0
j, are derived from Eq.

(13) by neglecting terms of higher order than dt (Iliopoulos and Hanratty, 1999; Mito and Han-
ratty, 2002) as
dli ¼
o

u2ui
ri

� �
ox2

dt; ð14Þ
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0 0 uiuj 1 1
� �
Fig. 2
solid p
dliduj ¼ rirj si
þ

sj
dt; ð15Þ
where an overbar indicates an ensemble average. It is noted that the nonzero terms in Eqs. (14)
and (15) are dl1, dl2, dl

02
1 , dl

02
2 , dl

02
3 , dl

0
1dl

0
2, for the flow field that is considered and that jointly

Gaussian random variables, dl0
i, of which covariances are given by Eq. (15) are generated every

time step. Mito and Hanratty (2002) showed that the Lagrangian stochastic method that is de-
fined by Eqs. (13)–(15) for dispersion of fluid particles satisfies the condition of well-mixedness
(Thomson, 1987). These equations and the numerical procedure for solving them are described
in detail by Mito and Hanratty (2003). This includes approximating the Lagrangian time con-
stants, si, as characterizing the dispersion of fluid particles from sources at different x2 (Mito
and Hanratty, 2002). The values of si (x2) used in the simulation at Res = 590 are given by Mito
and Hanratty (2004). The DNS database for turbulent channel flow at Res = 590, obtained by
Moser et al. (1999), provided the mean velocities of the fluid and the turbulent statistics that ap-
pear in Eqs. (13)–(15). The computational time step used in Eqs. (5), (6), (13) was Dt+ = Dt v*2/
m = 0.5.
Eq. (13) requires the time constants characterizing the fluid turbulence seen by the particles.

These can be different from the time constants characterizing the dispersion of fluid particles.
The basic notion in using Eq. (13) was that the si for fluid particles would need to be adjusted
to recognize that the dispersing particles do not follow the fluid and that the ratio of the time con-
stant used in Eq. (13) to the time constant characterizing the dispersion of fluid particles could be
a function of the inertial time constants of the particles and their free fall velocities. A preliminary
study revealed that good results could be obtained by simply equating the si in Eq. (13) to the time
constant of the fluid particles.
For example, the broken lines in Fig. 2 are values of si obtained in a DNS at Res = 150 for

sources of fluid particles located at different locations in the channel. These were determined by
calculating the time at which the Lagrangian correlation coefficient reaches a value of
Ri = 0.368. (This choice defines si as the area under the correlation curve if Ri(t) = exp(�t/si).)
The points shown in Fig. 2 were obtained by calculating the temporal correlation of fluid velocity
. Plots of Lagrangian time scales of velocity fluctuations of fluid particles and of fluid velocity fluctuations seen by
articles of sþpS ¼ 20 and no gravity, measured in a DNS at Res = 150.
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fluctuations seen by particles for the condition sþpS ¼ 20 and gi = 0. The sþ2 and sþ3 are
seen to be close to the values obtained by examining the dispersion of fluid particles. The sþ1
are lower. However, the calculations presented in this paper are relatively insensitive to the choice
of sþ1 .
3. Scope of the computations

The computations involved the introduction of Nb(=10,000) particles from the top and bottom
walls for cases in which Brownian motion was not considered. Woodmansee and Hanratty (1969)
have shown that atomization of wall films occurs by a rapid growth and removal of capillary
waves which create drops that are entrained by the turbulence in a region outside the viscous wall
layer. This would suggest that, in the absence of more data, drops should be placed in the field at a
short distance from the wall with a velocity characteristic of the mean velocity and the root-mean
square of the velocity fluctuations just outside the viscous wall layer. We have chosen to use an
injection velocity of ðV 0þ1 ; V 0þ2 ; V 0þ3 Þ ¼ ð15; 1; 0Þ at the bottom wall and ðV 0þ1 ; V 0þ2 ; V 0þ3 Þ ¼
ð15;�1; 0Þ at the top wall. The calculated deposition constants are relatively insensitive to the
choice of V 0i , except at large sþp where the particles move in trajectories which are not affected
by the fluid turbulence. The rates of atomization and deposition at the bottom and top walls
are calculated as Nb/ADt where A is the area of the wall over which the particles are discharged
and Dt is the time interval over which Nb particles are admitted from a wall source.
The concentration fields and statistics for the particle velocity fields were calculated with first-

order weights for each particle. This was done by using the distances between the centers of the
particles and the sampling points between which the center of the particle exists (Mito and Han-
ratty, 2004). The 129 points, xj2ðj ¼ 1–129Þ, were distributed from x2 = dp/2 to x2 = 2H � dp/2
with a cosine function, which gives bin sizes of Dxþ2 ¼ 0:088 at the walls and Dxþ2 ¼ 14:4 at the
center of the channel for the cases of dþ

p ¼ 0:368. Sixty-four sampling points were also distributed
in the regions of x12 6 x2 6 x32 and of x

127
2 6 x2 6 x1292 in the calculations of concentration profiles

(for sþpS 6 250) in order to capture the detailed near-wall behavior. This gives a bin size of
Dxþ2 ¼ 1:1	 10�4 at a wall for the cases of dþ

p ¼ 0:368. It is noted that the computational time step
Dt+ = 0.5 is not small enough to resolve the contributions of the particles in the injection process
that have been in the field for t+ < 1. These small bins can be used only for the determination of
concentration fields for sþpS 6 250, for which the contributions by the injection process to the con-
centration fields are negligibly small compared to the total concentration in the regions very close
to the walls. They were not used in the calculation of particle velocity fields because the contribu-
tions of the particles involved in the injection process to the average velocity fields could not be
ignored.
Distribution functions of the wall-normal velocity components of the depositing particles are

calculated by using the first-order sampling method and 65 bins distributed from V þ
d ¼ 0 to

V þ
d ¼ 2 with a hyperbolic tangent function which gives bin sizes of DV þ

d ¼ 1:7	 10�5 at V þ
d ¼ 0

and V þ
d ¼ 7:7	 10�2 at DV þ

d ¼ �2.
In the calculations in which the influence of Brownian motion was included, we used the ap-

proach adapted by Ounis et al. (1991) and by Chen and McLaughlin (1995). The dimensionless
Brownian force is described as
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F þ
Bi ¼ ni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Scsþ2pSDt
þ

s
; ð16Þ
where Sc is the Schmidt number and ni is a Gaussian random number. The Schmidt number is
defined as
Sc ¼ m
D
¼ 3pm2qfdp

CckT
¼
3pm3qfd

þ
p

CckTv
� ; ð17Þ
where Cc is the Cunningham slip factor, k is the Boltzmann constant, T is the absolute tempera-
ture and the gas is assumed to be air at atmospheric conditions. The friction velocity, v*, is assumed
to be 0.6 m/s (Lee et al., 1989; Chen and McLaughlin, 1995) in order to determine dp ¼ dþ

p m=v� in
Eq. (17). It is noted that the amplitude of the dimensionless Brownian force varies as v*1/2, so that it
increases with increases in v*. The momentum equation of a particle is defined as
dV i

dt
¼ � 3qfCD

4dpqpCC
jV �U jðV i � UiÞ þ F Bi þ gi; ð18Þ
where the Cunningham slip factor is introduced into the drag term as was done by Zhang and
Ahmadi (2000). In this study, the Brownian force that is defined by Eq. (16) was used only in
the calculations for sþpS ¼ 1, 3 and 5, for which the Stokes law is applicable. Simulations without
the Brownian effect were also done for these sþpS.
Two sets of calculations were carried out: In one of these, the dimensionless particle diameter

was kept constant at dþ
p ¼ 0:368 and the particle time constant was varied by changing qp/qf (See

Eq. (9)). In the second, qp/qf was kept constant at a value of 1000 (characteristic of gas–liquid
dispersed flow at atmospheric conditions) and the particle time constant was varied by changing
dþ
p .
Fig. 3 presents calculations of the bulk averaged particle Reynolds number, RepB, calculated for

different sþpS (defined by Eq. (9)). The Brownian force is not included in the calculations. It is noted
for dþ

p ¼ 0:368 that RepB < 2 so that Stokes law is a good approximation for the whole range of
qp/qf that was studied. Thus sþpS ffi sþpB. For qp/qf = 1000 the particle Reynolds number is larger
than unity for a large range of conditions.
Fig. 3. Variations of particle Reynolds number against the Stokesian inertial time constant.



Table 1
Stokesian and bulk-mean particle inertial time constants and bulk-mean particle Reynolds numbers for the conditions
calculated

dþp ¼ 0:368 qp/qf = 1000

sþpS sþpB RepB qp/qf sþpS sþpB RepB dþp
1 0.977 0.0748 1.33 · 102 1 0.988 0.0274 0.134
3 2.91 0.118 4.00 · 102 3 2.92 0.0740 0.232
5 4.82 0.147 6.65 · 102 5 4.84 0.118 0.300
10 9.55 0.181 1.33 · 103 10 9.52 0.214 0.424
20 18.9 0.242 2.65 · 103 20 18.5 0.441 0.600
40 37.2 0.367 5.30 · 103 40 35.2 0.901 0.848
100 91.4 0.536 1.33 · 104 100 81.9 1.87 1.34
250 226 0.643 3.32 · 104 250 187 3.45 2.12
500 449 0.712 6.65 · 104 500 344 5.27 3.00
1000 888 0.810 1.33 · 105 1000 624 7.93 4.24
2500 2120 1.34 3.32 · 105 2500 1310 14.2 6.70
5000 4150 1.62 6.65 · 105 5000 2120 25.8 9.48
10,000 8260 1.71 1.33 · 106 10,000 3180 52.1 13.4
25,000 20,500 1.76 3.32 · 106 25,000 6070 89.8 21.2

50,000 9960 131 30.0
100,000 16,200 189 42.4
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A difficulty in choosing run conditions is that sþpB is not known a priori. Therefore, in the cal-
culations for qp/qf = 1000 a range of s

þ
pS (or d

þ
p ) was selected so that the same range of s

þ
pB used for

dþ
p ¼ 0:368 was covered. Table 1 summarizes the conditions for the calculations. It is noted that a
range of sþpB ¼ 1–20; 000 was covered. This required a variation of sþpS of 1–100,000 for the runs
with qp/qf = 1000.
As can be seen in Table 1 calculations for dþ

p ¼ 0:368 requires a variation of qp/qf from
1.33 · 102 to 3.32 · 106. It is probably not feasible to realize the very large density ratios in
the laboratory and still keep Res = 590. Therefore, a consideration of these results would be of
interest only from the viewpoint of examining the calculations over a large range of parameter
space. The calculations for qp/qf = 1000 required a consideration of large particle Reynolds num-
bers and large dþ

p for which one could expect the existence of particle wakes which could influence
the fluid flow field. However, it will be noted (Fig. 9) that these conditions would exist only in the
range of sþpB where fluid turbulence is not important. Therefore, the calculations are of interest in
examining the particle behavior in the trajectory regime.
4. Results

4.1. Particle turbulence

Calculations for the particle turbulence were found to be the same both for the studies with
dþ
p ¼ 0:368 and the studies with qp/qf = 1000, and to be a function of sþpB. Furthermore, no
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difference could be noted when the effects of Brownian motion were included. Therefore, only re-
sults for dþ

p ¼ 0:368 are discussed in this subsection.
Fig. 4a presents root-mean-square values of the fluctuations of the wall-normal particle veloc-

ity, ðv22Þ
1=2, for dþ

p ¼ 0:368 and sþpS ¼ 1–250. These include contributions of motions excited by the
fluid turbulence and contributions of the injected particles. In the outer flow the former of these
seems to dominate for sþpS ¼ 1–40. The decrease of ðv22Þ

1=2, with increasing sþp has been noted by a
number of investigators. (See, for example, Reeks (1977).) It arises because the inertia of the par-
ticles prohibits their following the fluid fluctuations exactly. An equation proposed by Lee et al.
(1989) very roughly captures the behavior for sþpS ¼ 1–40:
Fig. 4
logari
v22 ¼
sL2=sp

0:7þ sL2=sp

� �
u22: ð19Þ
where sL2 is the Lagrangian time scale in the x2 direction for the fluid.
Results on the behavior of a single wall source (Mito and Hanratty, 2003) show that particles

injected from the wall are transported to a distance slightly less than the stopping distance in a
stationary fluid,
xþ2 stop ffi 0:65V 0þ2 sþpS; ð20Þ
where they then mix with the particles in the field. This is illustrated in Fig. 4b, which focuses on
the region close to the wall. Eq. (20) is indicated by arrows for the different sþpS represented in the
. Root-mean-square values of wall-normal fluctuating component of particle velocity in (a) arithmetic and (b)
thmic coordinates ðdþ

p ¼ 0:368Þ.
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figure. Deviations from the type behavior observed for the fluid turbulence close to the wall are
initiated approximately at x2 stop. It is not captured for sþpS ¼ 1 due to the insufficient resolution of
the particle turbulence in the region in the immediate vicinity of the wall.
The concentration in the bin adjacent to the wall may be considered to consist of two popula-

tions. One with concentration CW+ contains only the injected particles and the other with concen-
tration CW� includes depositing particles and other particles that have stagnated close to the wall.
The average value of v22 at the wall therefore can be represented by
Fig. 5
v22jx2¼dp=2 ¼
CWþðV 02Þ

2 þ CW�ðV WÞ2

CW
ð21Þ
where V 02 is the wall-normal velocity component of the injected particles and V W is the mean wall-
normal velocity of the other particles at the wall. The rates of injection and deposition are given as
the products of the concentrations and the mean velocities:
RAb ¼ CWþV 02; ð22Þ
RDb ¼ �CW�V W: ð23Þ

Since RAb = RDb in the fully-developed field and CW = CW+ + CW�, the quantities CW+ and CW�
can be eliminated from Eq. (21) to give
v22jx2¼dp=2 ¼ �V 02V W: ð24Þ
Thus, since V 0þ2 ¼ 1, the values of ðv22Þ
1=2 shown in Fig. 4b at dþ

p =2 equal ð�V WÞ1=2. The increase of
�V W with increasing sþpS results from the increased importance of deposition by free-flight. Be-
cause of the contribution of the injected particles, indicated by Eq. (24), ðv22Þ

1=2 also assumes larger
values than the fluid velocity fluctuations for sþpS ¼ 1, 3 and 5, at which free-flight is not the main
contributor to the particle flux to wall.
For sþpS ¼ 100 and 250 it is seen in Fig. 4b that the influence of injection velocity extends over a

much larger xþ2 . Results presented in Fig. 5 for sþpS > 250 are seen to be strongly influenced by the
injection velocity over the whole channel cross section. For a given sþpS, the v

2
2 are roughly inde-

pendent of xþ2 . For sþpS > 1000 the root-mean square of v2 increases with increasing sþpS. A limiting
. Root-mean-square values of wall-normal fluctuating component of particle velocity for sþpS P 500ðdþ
p ¼ 0:368Þ.
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value of ðv22Þ
1=2 is suggested at very large sþp for which injected particles proceed from one wall to

the other in a unidirectional trajectory without slowing down. This limiting value equals 1 since
particles are injected at a velocity of V 0þ2 ¼ 1. The calculations for sþpS ¼ 5000, 10,000, 25,000 indi-
cate a behavior which is very close to this.

4.2. Mean particle accelerations

Mean values of the particle acceleration for dþ
p ¼ 0:368 are used to evaluate the turbophoretic

velocities defined by Eq. (2). In the system used in this study, the turbophoretic velocity is exactly
defined from Eq. (6) as
V tp ¼ �sp
dV 2
dt

; ð25Þ
where sþp is the local value obtained from Eq. (8). Turbophoretic velocities defined by Eq. (25) are
plotted in Fig. 6. In the system considered, Eq. (2) was found to give almost the same results as
Eq. (25). At the center of the channel V þ

tp is zero because of symmetry. It is also observed to be
zero at xþ2 ffi 80 for sþpS 6 100. In the outer region the turbophoretic velocities have positive values,
that is, away from the wall. In the wall region, the particles have mean convective velocities to-
ward the wall.
The magnitude of the turbophoretic velocity is seen to increase with increasing sþpS, even though

the magnitude of dV þ
2 =dt

þ is decreasing. The slowing of the injected particles as they move out
into the fluid provides negative contributions to dV þ

2 =dt
þ or positive contributions to V þ

tp.
For sþpS 6 20 this effect is not evident. However, the deceleration of the injected particles proba-
bly accounts for the decrease in the magnitude of V þ

tp at x
þ
2 ffi 20 with the increase of sþpS from 20

to 40.
The variation of Vtp is in qualitative agreement with classical relation given by Eq. (1). How-

ever, as illustrated in Fig. 7 for sþpS ¼ 5, it overpredicts the magnitude for xþ�
2 < 200. Young and

Leeming (1997) started with the following relation in an Eulerian framework for the mean accel-
eration of solid particles in a fully-developed field:
Fig. 6. Turbophoretic velocities ðdþ
p ¼ 0:368Þ.



Fig. 7. Test of theories of turbophoretic velocity ðdþ
p ¼ 0:368Þ. (a) sþpS ¼ 5, (b) sþpS ¼ 20.
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dV 2
dt

¼ V 2
oV 2
ox2

þ ov22
ox2

� v2
ovi
oxi

; ð26Þ
From conservation mass considerations,
ovi
oxi

¼ � oðlnCÞ
ot

� V i
oðlnCÞ
oxi

� oV i

oxi
: ð27Þ
They substituted Eq. (27) into Eq. (26) and assumed that o(lnC)/ot is not correlated with v2 to
obtain
dV 2
dt

¼ V 2
oV 2
ox2

þ ov22
ox2

þ v2V i
oðlnCÞ
oxi

: ð28Þ
In their calculations they ignored the last term in Eq. (28) and, therefore, represented the mean
acceleration as
dV 2
dt

ffi V 2
oV 2
ox2

þ ov22
ox2

: ð29Þ
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As shown in Fig. 7, Eq. (29) does not produce predictions (for the cases considered in this paper)
that are much different from Eq. (1). Cerbelli et al. (2001) included effects of spatial variations of C
by using Eq. (28) with the following approximation
Fig. 8
v2V i
oðlnCÞ
oxi

ffi v22
oðlnCÞ
ox2

: ð30Þ
The prediction of Cerbelli et al. roughly agrees with the calculations using Eq. (25).

4.3. Rates of deposition for dp
+ = 0.368

Cumulative fractions of the flux of particles, depositing with velocities of V þ
d < V þ

2 < 0, are pre-
sented in Fig. 8 for the case of dþ

p ¼ 0:368. For sþpS ¼ 1, 3, 5 particles are mainly depositing with
very small velocities, 10�4 < �V þ

d < 10�3. These are of the order of the wall-normal fluid velocity
fluctuations at dþ

p =2. For this range of variables, particles trapped close to the wall appear to be
depositing by ‘‘turbulent diffusion’’ (Mito and Hanratty, 2004). For sþpS ¼ 10, 20, 40, 100, 250, the
particles are depositing, mainly, with velocities which are characteristic of fluid velocity fluctua-
tions in the region outside the viscous sublayer. Particles with these velocities are pictured to move
in ‘‘free-flight’’ through the layer of trapped particles close to the wall.
Plots of the mean deposition velocity are presented in Fig. 9a. A strong variation with sþpB is not

noted in the ‘‘turbulent diffusion’’ regime, sþpB ¼ 1–5, since the �V
þ
d largely result from the fluid

velocity fluctuations at dp/2. The slight increase with decreasing sþpB could reflect the improved
ability of the particles to follow the fluid turbulence. The increase in �V

þ
d in the region

5 < sþB < 250 occurs because, on average, free-flight to the wall is initiated at larger distances from
the wall as sþpB increases.
This consideration plus the recognition that the concentration profiles become more uniform

with increasing sþp lead Hay et al. (1996), Hanratty et al. (2000), Pan and Hanratty (2002b) to sug-
gest that deposition in annular flow is dominated by particles that start their free-flight outside the
viscous wall layer so that
kD ¼ rpffiffiffiffiffiffi
2p

p ; ð31Þ
. Cumulative fraction of contribution of particles with velocities P V dþ to the total deposition flux ðdþ
p ¼ 0:368Þ.



Fig. 9. Deposition constants defined with the bulk-mean concentration, kþDB, and average velocities of depositing
particles, �V

þ
d , for the cases of (a) dp

+ = 0.368 and (b) qp/qf = 1000.
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where rp is the root-mean-square of the wall-normal velocity fluctuations of the particles and a
Gaussian distribution is assumed. This equation is plotted with dots and dashes in Fig. 9a. The
rp were calculated at xþ2 ¼ 40 by using Eq. (19) to relate the particle turbulence to the fluid tur-
bulence. It is noted in Fig. 9a that �V

þ
d reaches a value approximately equal to Eq. (31) at

sþpB ¼ 400. It is also noted from Eq. (20) that x+2stop ffi 2H+ at sþpS ¼ 1800, since V 0þ2 ¼ 1. This sug-
gests that particles could be depositing by free-flight unidirectional trajectories that start from the
opposite wall. At extremely large sþpS these would arrive at roughly the same velocity at which they
are injected. The observation of �V

þ
d ffi 1 at sþpB ffi 5000 is consistent with this interpretation.

A deposition constant defined as
kþDB ¼ RAb þ RAt
2CBv�

¼ RAb
CBv�

; ð32Þ
is also plotted in Fig. 9a. By considering Eqs. (22) and (23)
C
þ
W ¼ CWv�

RAb
¼ 1

V 0þ2
� 1

V
þ
W

: ð33Þ
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Thus, when jV þ
Wj � V 0þ2 , C

þ
W ¼ �1=V þ

W; that is, the injected particles are not influencing the con-
centration at the wall. This holds for sþpB < 1000. Then, if the sampling volume at the wall is small
enough V

þ
W ¼ V

þ
d so that �V dCW is equal to RDb = RAb. From Eq. (32), it follows that changes in

kþDB represent changes in V
þ
d and changes in the ratio CB=CW, which depends on turbulent mixing

away from the wall.
In classical transport processes turbulent mixing creates a concentration boundary layer in

which the concentration monotonically increases, CB=CW  1 and the rate of transfer is control-
led by the concentration gradient at the wall. This is realized only when Brownian motion is con-
trolling. The increase in kþDB with decreasing sþpB observed at very small s

þ
pBðsþpB < 3Þ represents a

transitional region in which deposition changes from a free-flight regime to a turbulent diffusion
regime.
The striking feature of Fig. 9a is the sharp increase in kþDB with increasing sþpB for 3 < sþpB < 40,

where �V
þ
d is increasing and CB=CW is decreasing. (See Fig. 11a.) Thus, k

þ
DB in this transition re-

gion depends both on the deposition velocity and on the mixing processes which govern the
changes of C with x2. For sþpB > 40 changes in CB with increasing sþpB are small (See Fig. 11a.),
so changes in kþDB reflect changes in V

þ
d (or changes in the particle turbulence outside viscous wall

layer).
For 100 6 sþpB 6 1000, the deposition constant is roughly given by Eq. (31), which has been

proposed for annular flows. For sþpB > 1000 the concentration profile is uniform and kþDB is con-
trolled by a trajectory mechanism. At very large sþpB, say sþpB ¼ 5000, kþDB ¼ �0:5V þ

d . For these sþpB
the velocity of the injected particles, V 0þ2 , equals the velocity of the depositing particles that started
a trajectory from the opposite wall. Thus half of the particles at the wall are depositing, so that
V

þ
W ¼ �V 0þ2 and kþDB ¼ �0:5V þ

d .
As shown in Fig. 9a, Brownian motion is having a very small effect on the rate of deposition.

The line on the bottom of the figure is calculated with the following equation (proposed by Shaw
and Hanratty (1977) and verified by Na et al. (1999))
kD
v�

¼ 0:0889Sc�0:704; ð34Þ
for Schmidt number = 6.0 · 106. For air at atmospheric conditions this corresponds to a friction
velocity of 0.6 m/s. From Eq. (17), it is noted that kD/v

* given by Eq. (34) varies as v*0.704, so in-
creases in v* are accompanied by increases in kD/v

*.
Fig. 9a demonstrates that annular flow can be represented by two regions in which deposition is

by turbulence or by a trajectory mechanism. The latter was first proposed by Anderson and Rus-
sell (1970) and has been discussed in papers by Chang (1973), James et al. (1980) and Andreussi
and Azzopardi (1983). It should be pointed out that the value of sþpB at which a trajectory mech-
anism is initiated would decrease with decreasing Res and with increasing V 0þ2 .

4.4. Rates of deposition for qp/qf = 1000

The calculations for dþ
p ¼ 0:368 used qp/qf = 133 to 3.32 · 106 in order to cover a range of sþpB

of 1–20,000. (See Eq. (9).) Fig. 9b presents results of a more realistic calculation that keeps qp/qf at
a constant value of 1000 (which corresponds to liquid drops in air). In this case, values of dþ

p from
0.134 to 42.4 are needed in order to cover a range of sþpB of 1 to 20,000. The very small values of d

þ
p



1328 Y. Mito, T.J. Hanratty / International Journal of Multiphase Flow 30 (2004) 1311–1336
corresponding to small sþpS require that Brownian forces need to be considered for sþpS ¼ 1, 3, 5.
The curve on the bottom of the figure is obtained from Eq. (34) for a friction velocity of 0.6
m/s (Chen and McLaughlin, 1995). Since dþ

p is decreasing with decreasing sþpS this corresponds
to a Sc variation of 1.6 · 106 to 5.0 · 106.
The calculations suggest that Brownian motion starts to control deposition some where be-

tween sþpB of 0.1 and 1 (dp = 1–3 lm for water drops in air under atmospheric conditions). The
influence of Brownian forces at small sþpB is manifested in several ways. If these forces are not
taken into account the �V

þ
d differs from what is found for the calculations with dþ

p ¼ constant
in that they continue to decrease with sþpB at very small s

þ
pB since particles with decreasing d

þ
p see

smaller fluid turbulence. However, the decrease in dþ
p gives rise to increasing Brownian forces

and therefore increasing contributions of Brownian motion to the deposition velocity. Thus
�V

þ
d is actually seen to increase with decreasing sþpB.
It is interesting to note that, for sþpB > 3, the curves representing kþDB are roughly the same in

Fig. 9a and b. This suggests the influences of dþ
p and qp/qf are taken into account through a con-

sideration of sþpB.
Chen and McLaughlin (1995) have recently carried out a study of particle deposition in a

DNS of turbulent flow in a vertical channel at Res = 125. The particle system was inherently
nonstationary in that no sources were used for t+ > 0, so that the concentration would be
zero at very large times. A density ratio of qp/qf = 946 was used and inertial time constants
of 0.1–50 were explored. The influences of Brownian forces and lift were included in the calcula-
tions. A deposition constant was defined by using an average concentration over the central re-
gion of the channel. We found that this average is very close to the bulk concentration used in
this study.
A comparison of the kþDB obtained by Chen and McLaughlin at t

+ = 0–4000 for sp
+
6 3 and at

t+ = 0–1000 for sþp > 3 with those obtained in this study for qp/qf = 1000 at very large
tþðtþ 6 2	 108 for sþp P 1Þ is given in Fig. 10. The agreement is satisfying, considering the
difference in the systems used in the two studies. It is noted that our calculations are consistent
Fig. 10. Comparison of the deposition constants between the DNS results by Chen and McLaughlin (1995) and our
calculation.
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with the suggestion of McCoy and Hanratty (1977) that Eq. (34) is applicable to the region
sþpB 6 ca 0:3.

4.5. Concentration profiles

Concentration profiles are presented in Figs. 11 and 12 for dþ
p ¼ 0:368 and for qp/qf = 1000. A

range of sþpS ¼ 1–250 is covered. (For sþpS > 250 a uniform concentration profile was calculated.)
The injection process causes small bumps at 13, 26 and 65 for sþpS ¼ 20, 40, 100. No evidence of
this influence is seen for sþpS 6 10.
A strong effect of Brownian motion is seen only in the calculation for sþpS ¼ 1 and qp/qf = 1000,

at which dp = 3 lm. (See Fig. 12.) The shape of this profile is similar to the one calculated for
sþpS ¼ 1 without including the effects of Brownian forces. The chief difference is in the concentra-
tion at the wall.
It is noted in Figs. 11 and 12 that the main changes in concentration occur for xþ2 < 10. This is

consistent with the suggestion that the turbophoretic drift toward the wall is playing an important
role. (See Fig. 6.) Very thin concentration boundary layers with maxima at xþ2 < 1 are seen in the
immediate vicinity of the wall. In this boundary layer, turbophoresis is nearly zero so turbulent
diffusion is the dominant mechanism of particle transport.
Fig. 11. Concentration fields plotted against (a) arithmetic and (b) logarithmic abscissae ðdþ
p ¼ 0:368Þ.



Fig. 12. Concentration fields plotted against (a) arithmetic and (b) logarithmic abscissae (qp/qf = 1000).
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5. Testing of diffusion theory

Eq. (3) with g2 = 0 and F2(x2) = 0 and the calculations of Vtp presented in Fig. 6 were used to
calculate the profiles of turbulent diffusivity for sþpS ¼ 1, 3, 5, 10 shown in Fig. 13. A similarity in
the shapes of these curves is noted. The solid curve is the diffusivity for fluid particles. The solid
particle diffusivities are qualitatively and quantitatively different from the fluid diffusivities. For
Fig. 13. Turbulent diffusivities ðdþ
p ¼ 0:368Þ.
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xþ2 > 80 where V þ
tp takes on positive values one obtains the nonphysical result that the particle dif-

fusivity is negative. This comparison suggests that large scale mixing that is not related to concen-
tration gradients must be occurring.
We have chosen to discuss these differences by modifying the diffusion equation so as to include

sources and sinks. These might be thought of as being due to free-flights of large velocity particles
which disengage from the fluid turbulence. The diffusion equation is thus modified to be
Fig. 1
and (c
o

ox2
V tpC þ o

ox2
�ðe þ DÞ oC

ox2

� �
¼ S; ð35Þ
where a positive value of S indicates a source and a negative value indicates a sink. (For example,
locations where particles disengage from the turbulence could be considered to be sinks and loca-
tions where particles are reengaging with the turbulence could be considered as sources.) Values of
S calculated for sþpS ¼ 1, 3, 5, 10 in this way are shown in Fig. 14 for dþ

p ¼ 0:368. In the near wall
region (central column) locations between xþ2 ¼ 3 and xþ2 ¼ 13 are, on average, acting as sinks.
Locations between the wall and xþ2 ¼ 3 are, on average, acting as sources. Thus, this could suggest
4. Sources and sinks in the diffusion model (a) in the half-height of the channel and (b) in the near-wall region,
) mass flux balance ðdþ

p ¼ 0:368Þ.
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that large scale transport, in addition to turbophoresis, is bringing particles to the trapped layer
in the immediate vicinity of the wall. Sources exist in the region 13 < xþ2 < 80 and very small
sinks, in the region 80 < xþ2 < 590. This could suggest the existence of large scale motions
that transport particles from xþ2 > 80 to xþ2 < 80 to counterbalance the positive turbopho-
retic fluxes observed for xþ2 > 80. Very large sources are observed adjacent to the wall. This sug-
gests that many particles are carried into this region from outer flow by free-flights and are
trapped.
Fig. 14 also presents flux balances that are obtained by integrating Eq. (35):
V tpC � e
oC
ox2

¼
Z x2

dp=2
S dy þ I0; ð36Þ
where V tpC, �eðoC=ox2Þ and
R x2
dp=2

S dy þ I0, respectively, represent the mass fluxes due to turbo-
phoresis, turbulent diffusion and sources. The term I0 is the integration constant defined as the
value of the left-hand side of Eq. (36) at xþ2 ¼ dþ

p =2:
I0 ¼ V tpC � e
oC
ox2

� �
x2¼dp=2

: ð37Þ
The turbophoretic flux is zero at xþ2 ¼ dþ
p =2 because V

þ
tp ¼ 0. Thus, the sources and sinks counter-

balance the turbulent diffusion flux in the region next to the wall. This is not seen in Fig. 14c be-
cause large changes of these fluxes occur at xþ2 < 1. It is noted that the particle transport by
sources and sinks is not small compared to particle transport by turbophoresis and turbulent
diffusion.
6. Contributions and limitations

Calculations were made for the turbulent flow, in a channel, of a suspension of spheres for
which qp/qf is a large number. The main contribution is the presentation of results for the concen-
tration field and the deposition process for a larger range of inertial time constants than had pre-
viously been explored. (The effect of dþ

p and the density ratio are found not to have a direct effect,
except for very small sþp .) The outcome is to provide new insights about the controlling mecha-
nisms. Depending on the value of sþp four regimes can be defined whereby deposition is controlled
by Brownian diffusion, turbulent diffusion, turbulent free-flight or unidirectional trajectories that
are not affected by fluid turbulence.
Deposition in annular flows has been described as due to turbulent free-flight and, less fre-

quently, as due to trajectories which strongly depend on the velocity with which the drops are in-
jected into the flow from the wall film. The calculations clearly show the transition from a
turbulent mechanism to a trajectory mechanism as sþp increases. These results could be of interest
when considering gas–liquid flows in conduits of small dimensions. Furthermore, support is pro-
vided for an equation that has been suggested to describe turbulent deposition and a simple math-
ematical description of the trajectory mechanism is partially confirmed.
Of particular interest from the viewpoint of developing a theoretical description of concentra-

tion profiles is the finding that turbulent dispersion cannot be described with a Boussinesq
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approximation. An evaluation of this approach is straightforward in this study since the flux
under fully-developed conditions is zero, computer times (as high as t+ = 2 · 108) were large
enough to reach a stationary state and turbophoretic velocities were determined directly. The only
unknown term in the mass balance equation is the one representing Reynolds transport. Thus,
turbulent diffusivities could be obtained directly from the concentration profiles. These assume
unrealistic values.
We suggest that this indicates that large scale mixing, which cannot be captured by local con-

centration gradients, is occurring. We introduce the notion of local sources and sinks of particles
in order to quantify this interpretation. This is not done in the context of suggesting a new com-
putational approach. In fact, the discrepancies might be more fundamental in that the physics are
better captured by using a Lagrangian approach.
The calculations have a number of limitations. The gravitational constant is assumed to

be zero, the particle concentration is assumed to be small enough that particle–particle interac-
tions and the influence of the particles on the fluid turbulence can be ignored. The assump-
tion of zero gravity means that the results are best applied to vertical flows or to horizontal
flows for which free fall velocity of particles is smaller than the velocity characterizing mean tur-
bulent impaction, which is, for example, 1.4 · 10�4v* for dþ

p ¼ 0:368. (See Mito and Hanratty,
2004.)
Calculations provided dimensionless concentrations, given as C+ = Cv*/RAb, so local volume

fractions can be calculated if the rate of atomization is known. The suspensions that exist in annu-
lar flows typically have mean particle volume fractions of a ffi 10�3 and mean mass loadings of
g ffi 1 (Hay et al., 1996; Pan and Hanratty, 2002a), so the assumption of a dilute suspension seems
reasonable for this flow pattern. Nevertheless, it would be useful to carry out calculations to
examine the effects of volume fraction and of mass loading. The limitation could be more serious
than would be indicated by mean volume fraction since, as discussed in this paper, concentrations
that are much larger than the bulk concentration can exist close to the wall. Furthermore, Yama-
moto et al. (2001) and Sommerfeld (2003) examined the effects of inter-particle collisions on par-
ticle turbulence in a vertical or horizontal channel for g ffi 1 and found a noticeable redistribution
of energy caused by inter-particle collisions, that is, decreases of the streamwise fluctuations and
increases of the wall-normal fluctuations. Thus the results should be an accurate representation of
annular flows in the low concentration region where RD varies linearly with concentration (Hay
et al., 1996; Pan and Hanratty, 2002a).
The idealized model of annular flow used in this analysis offers the advantage that a fully-devel-

oped suspension can be realized. However, the application to real annular flows is handicapped
because the method for introducing drops into the flow by the atomization of the wall films is
not sufficiently understood. More research in this area is needed.
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